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Abstract: A comprehensive description is presented of the effects on two-spin coherences (i.e., superpositions
of zero- and double-quantum coherences) of cross-correlation between the fluctuations of two different relaxation
mechanisms in nuclear magnetic resonance (NMR). Dipole-dipole (DD) interactions between four nuclei and
chemical shift anisotropy (CSA) of two of these nuclei are considered. Two complementary experiments have
been designed for15N,13C-labeled proteins to quantify the effects of cross-correlation between the13CR-1HR

and15N-1HN dipolar interactions on two-spin coherences involving13CR of the ith residue with the15N of the
(i+1)th amino acid. Two other experiments allow one to quantify the effect of cross-correlation between the
13C′ (carbonyl) CSA and the13CR-1HR dipolar coupling on the relaxation of two-spin coherences involving
the 13C′ and 13CR nuclei on the same residue of the protein. These experiments have been used to extract
relevant cross-correlation rates in15N,13C-labeled human ubiquitin. These rates show a high degree of correlation
with the backboneΨ angles in proteins.

Introduction

In nuclear magnetic resonance (NMR), cross-correlation
between the fluctuations of two different relaxation mechanisms
has been shown to be a valuable source of information about
structure1-3 and dynamics.4,5 Cross-correlation effects have also
proven to be useful to study chemical exchange.6 After early
seminal work by Wokaun and Ernst7 on the effects of correlated
fluctuations of external fields on transverse relaxation of multiple
quantum coherences, there has been a recent renewal of such
studies.8-12 In particular, it is possible to quantify the effects
of cross-correlation between the fluctuations of13CR-1HR and
15N-1HN dipolar couplings on the relaxation of two-spin
coherences involving15N and 13CR nuclei in a protein back-

bone.8,11,12 Similarly, cross-correlation between the chemical
shift anisotropy (CSA) of a13C′ (carbonyl) nucleus and a13CR-
1HR dipolar coupling has been investigated.9,10,12 It has been
shown that the corresponding relaxation rates allow one to
determine backbone anglesΨ in proteins, which have been
hitherto inaccessible. These experiments bear a relationship to
methods designed to measure dihedral angles in the solid
state.13,14

This paper consists of three distinct parts. In the first part of
the paper, we present a compact theory for the description of
the effects on two-spin coherences (i.e., zero- and double-
quantum coherences involving two spins) of correlated fluctua-
tions of dipole-dipole and CSA interactions. In the second part,
we present new experiments to measure these cross-correlation
effects. Finally, in the third part, we relate two of the rates that
we can measure accurately, namely the rate due to cross-
correlation between13CR-1HR and15N-1HN dipolar couplings
and the rate due to the cross-correlation between the13C′ CSA
and the13CR-1HR dipolar coupling, to the backbone anglesΨ
in human ubiquitin.

In a recent publication11 we have described a method to
measure the extent of cross-correlation of the fluctuations of
15N-1H and 13CR-1HR dipolar couplings, which affect the
relaxation of two-spin coherences involving15N and13CR. Cross-
correlation leads to partial conversion of a density operator
component 2CRxNx into 8CR

yNyHR
zHN

z. This interconversion can
be measured quantitatively by comparing signals obtained from
two complementary two-dimensional experiments.11,15 In this
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paper we extend the methodology to the measurement of cross-
correlation between the13C′ CSA and the13CR-1HR dipolar
coupling on the relaxation of two-spin coherences involving13C′
and13CR. The experiments described in our earlier publication
involved a fixed relaxation delayT, which had to be chosen to
be a multiple of the inverse of the scalar coupling1J(CRCâ)
(∼35 Hz), to minimize losses of coherence. Such long delays
(on the order of 25 ms) are unfavorable in large proteins with
short transverse relaxation times. In the experiments described
here, in analogy to experiments described by Yang et al.,10 we
have used band-selective pulses applied to13CR (but not to13C′
and13Câ), so that one can chose relaxation delays of arbitrary
durationT.

Theory

In this section, we shall consider cross-correlation effects
involving various nuclei in the peptide plane shown in Figure
1.

CrHr/NHN Dipole-Dipole Cross-Correlation.Consider an
initial density operator consisting of a suitably excited two-
spin coherence, i.e.,σ(0) ) 2CR

xNx. The main interactions that
need to be taken into account to describe the transverse
relaxation of this term are the two chemical shift anisotropies
CSA{13CR} and CSA{15N}, and the four dipolar couplings DD-
{13CR-1HR}, DD{13CR-1HN}, DD{15N-1HN} and DD{15N-
1HR}. The relevant cross-correlated relaxation mechanisms are
summarized in Table 1 and represented graphically in Figure
2. If the rotational diffusion is in the slow-tumbling regime,
only the zero-frequency components of the spectral density
functions, i.e., theJ(0) terms (see the Appendix, section B) can
make significant contributions to the relaxation rates. The
density operator,σ(t), can be expanded in a suitable basis of
orthogonal operators{Bk}:16

where the time dependence is contained in the coefficients
bk(t). The spin dynamics are governed by the master equation,
which can be represented in matrix form as

where the coefficientsbk(t) are collected into a vectorb. The
matrixR describes both relaxation and coherent evolution. Each
coherence associated with a pair of eigenstates, i.e., with a single
transition, can be represented by a product of shift operatorsI+
andI- (which will be denoted CR+, CR

-, N+, and N- to indicate
the chemical identity of the spins that carry the angular
momentum) and polarization operatorsIR ) E/2 + Iz andIâ )
E/2 - Iz, whereE represents the identity operator.16 These will
likewise be denoted HRR, HR

â, HN
R, and HN

â. Thus, the four
lines of the doublet-of-doublets in the double-quantum spec-
trum associated with the coherence CR

+N+ can be asso-
ciated with the four single-transition operators CR

+N+HR
RHN

R,

(16) Ernst, R. R.; Bodenhausen, G.; Wokaun, A.Principles of Nuclear
Magnetic Resonance in One and Two Dimensions; Clarendon Press: Oxford,
1987.

Figure 1. Nuclei belonging to the backbone of a protein that can sustain
two-spin coherences which are affected by cross-correlation effects.
The peptide plane is spanned by the five atoms CR

i, C′i, Oi, Ni+1, and
HN

i+1.The CSA tensor of the carbonyl13C′ nucleus has a principal
componentσY along the CdO bond, a componentσX that lies in the
peptide plane, and a componentσZ that is perpendicular to this plane.

σ(t) ) ∑kbk(t)Bk (1)

db/dt ) -Rb (2)

Table 1. Cross-Correlated Interactions in a
1HR-13CR-...-15N-1HN Systema,b

RDQRR RDQRâ RDQâR RDQââ RZQRR RZQRâ RZQâR RZQââ

RCRHR,NHN + - - + - + + -
RCRHN,NHR + - - + - + + -
RCRHR,CRHN + - - + + - - +
RNHR,NHN + - - + + - - +
RCRHR,NHR + + + + - - - -
RCR,N + + + + - - - -
RCRHN,NHN + + + + - - - -
RCR,CRHR + + - - + + - -
RN,NHR + + - - + + - -
RN,CRHR + + - - - - + +
RCR,NHR + + - - - - + +
RCR,NHN + - + - - + - +
RN,CRHN + - + - - + - +
RCR,CRHN + - + - + - + -
RN,NHN + - + - + - + -

a The + and- signs in the table indicate whether the contribution
of a particular term must be added to or subtracted from the average
transverse relaxation rates.b See the Appendix, section B, for explicit
expressions of the rates.

Figure 2. Pictograms representing various interactions in a1HR-13CR-
...-15N-1HN subsystem. Bold lines and circles stand for the DD and
CSA interactions that are responsible for various cross-correlated
relaxation effects. Pictograms shown on the same row produce
analogous effects on the relaxation of two-spin coherence 2CR

xNx.
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CR
+N+HR

RHN
â, CR

+N+HR
âHN

R, and CR
+N+HR

âHN
â. A similar

notation may be used for the coherences of orderp ) 0 and
-2. The relaxation matrixR has a block diagonal form
consisting of four 4-dimensional subspaces spanned by subsets
of basis functions. Thus, thep ) +2 and one of thep ) 0
manifolds may be written as

The elements of the vectorsb-+ andb-- transform as complex
conjugates ofb+- and b++, respectively. Therefore, it is
sufficient to follow the evolution of the former two vectors
explicitly. The basis functions have the same norm as the
Cartesian operators. The evolution ofb++ and b+- in their
respective subspaces is described by

whereR++ andR+- are given by

with the effective scalar couplings

Since chemical shifts are refocused in our experiments, they
need not be considered in eq 5. The average rate appearing in
the diagonal terms isRav ) (Rii + Ria + Rai + Raa)/4. The rates
Rii , Ria, Rai, andRaa are the autorelaxation rates of the in-phase
and antiphase terms 2CR

xNx, 4CR
xNxHN

z, 4CR
xNxHR

z, and
8CR

xNxHN
zHR

z, respectively. For the time being, we assume that
these relaxation rates are equal for the zero- and double-quantum
manifolds. The other contributions to the diagonal elements of
the matrixes of eq 5 are due to cross-correlation between the
different interactions mentioned before. Each of these rates
comprises up to 15 rates that are due to different cross-correlated
relaxation mechanisms (see Table 1 and Figure 2 for further
details). It is convenient to study the effects of the off-diagonal
elements on the spin dynamics using perturbation theory18

(Appendix, section A). One can safely neglect the off-diagonal

elements provided that|Raa - Rai|, |Ria - Rii|, |Raa - Ria|, |Rai

- Rii| , |4π1J(CRHR)| - |4π1J(NHN)|. In this case, only the
diagonal elementsRkk of the R matrix need to be considered,
so that all coherences feature monoexponential decays:

The effect ofπ pulses on the13CR, 15N, and1H channels is
to interchange CR+ with CR

-, N+ with N-, and HR with Hâ,
respectively. If one or moreπ pulses are applied between
consecutive time intervals of duration∆tn, the various operators
Bk will be interconverted. After the last interval atT ) ∑∆tn
the components ofb are

where the density operator is in the stateBj at the beginning,
Bk in the nth interval∆tn, andBi at timeT.

The scheme in Figure 3a has been designed to measure the
cross-correlated relaxation between the dipolar interactions
13CR-1HR and 15N-1HN. In the slow tumbling limit, the only
fluctuating dipolar Hamiltonians that contribute to this relaxation
mechanism are proportional to CR

zHR
z and NzHN

z. The effect
of dipole-dipole cross-correlation on the initial density operator
σ(0) ) 2CR

xNx is a partial conversion into a termσ(T) )
8CR

yNyHR
zHN

z. It is important that the pulses interconvert the
coherences in such a way that the sign of the rateRCRHR,NHN

(17) Brutscher, B.; Bremi, T.; Skrynnikov, N.; Bru¨schweiler, R.; Ernst,
R. R. J. Magn. Reson.1998, 130, 346.

(18) Merzbacher, E.Quantum Mechanics,2nd ed.; Wiley: New York,
1970.

Figure 3. Manipulations by sequences ofπ pulses of two-spin
coherences (a) 2CRxNx and (b) 2C′xCR

x. These schemes are designed to
measure the cross-correlated ratesRCRHR,NHN andRCRHR,C′, respectively.
If the pulses are positioned as shown by filled symbols, evolution under
chemical shifts of the heteronuclei and scalar couplingsJ(NH) and
J(CH) are suppressed. In (a) all DD-CSA cross-correlation effects
are removed because the protonπ pulses invert both HR and HN. If
these two pulses are shifted simultaneously in the same direction, this
does not affect any of the cross-correlation rates of Table 1, while
evolution under scalar couplingsJ(CRHR) and J(NHN) is no longer
canceled. The toggling frame pictures below show how the scalar
couplings and cross-relaxation rates change sign as a result of applying
π pulses. In (a)J(NHN) transforms in the same manner asJ(CRHR).
The rates in Tables 1 and 2 behave as follows: with reference to (a)
rates 1-7 of Table 1 asRCRHR,NHN and rates 8-15 of Table 1 asRN,CRHR;
with reference to (b) rates 1 and 2 of Table 2 asRC′,CRHR and rates 3-6
of Table 2 asRC′HR,CRHR. In (b) only the effects of the ratesRCRHR,C′ and
RC′HR,CR are retained. If the outer1H and13C′ pulses are simultaneously
moved toward the center, the overall effect of the cross-correlation rates
of Table 2 is not modified, while scalar coupling evolution can occur.
Note that the chemical shift of the carbonyl is not refocused anymore.

b++ ) (〈2CR
+N+HR

RHN
R〉

〈2CR
+N+HR

RHN
â〉

〈2CR
+N+HR

âH
N

R〉
〈2CR

+N+HR
âH

N
â〉

) b+- ) (〈2CR
+N-HR

RHN
R〉

〈2CR
+N-HR

RHN
â〉

〈2CR
+N-HR

âH
N

R〉
〈2CR

+N-HR
âH

N
â〉

)
(3)

db++/dt ) -R++b++ (4a)

db+-/dt ) -R+-b+- (4b)

R++ )

(iπJ+++Rav+RDQRR
Rii+Rai-Ria-Raa

4

Rii-Rai+Ria-Raa

4

Rii-Rai-Ria+Raa

4
Rii+Rai-Ria-Raa

4
iπJ+-+Rav+RDQRâ

Rii-Rai-Ria+Raa

4

Rii-Rai+Ria-Raa

4
Rii-Rai+Ria-Raa

4

Rii-Rai-Ria+Raa

4
-iπJ+-+Rav+RDQâR

Rii+Rai-Ria-Raa

4
Rii-Rai-Ria+Raa

4

Rii-Rai+Ria-Raa

4

Rii+Rai-Ria-Raa

4
-iπJ+++Rav+RDQââ

)
(5a)

R+- )

(iπJ+-+Rav+RZQRR
Rii+Rai-Ria-Raa

4

Rii-Rai+Ria-Raa

4

Rii-Rai-Ria+Raa

4
Rii+Rai-Ria-Raa

4
iπJ+++Rav+RZQRâ

Rii-Rai-Ria+Raa

4

Rii-Rai+Ria-Raa

4
Rii-Rai+Ria-Raa

4

Rii-Rai-Ria+Raa

4
-iπJ+++Rav+RZQâR

Rii+Rai-Ria-Raa

4
Rii-Rai-Ria+Raa

4

Rii-Rai+Ria-Raa

4

Rii+Rai-Ria-Raa

4
-iπJ+-+Rav+RZQââ

)
(5b)

J++ ) 1J(CRHR) + 1J(NHN)

J+- ) 1J(CRHR) - 1J(NHN) (6)

bk(t) ) bk(0) exp(-Rkkt) (7)

bi(T) ) bj(0) ∏
n)1

N

exp(-Rkk∆tn) (8)
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that one wishes to measure is preserved (see Table 1 and
toggling frame diagrams in Figure 3a). This can be achieved
by applyingπ pulses simultaneously to two of the four nuclei
involved. Thus in Figure 3a two1H π pulses are applied atT/4
and at 3T/4, while π pulses are applied atT/2 simultaneously
to the 13C and 15N channels. The1H pulses average out the
CSA-dipole interactions (the last eight terms in Table 1), while
13C and15N pulses refocus the chemical shift evolution. Using
eq 8 one can calculate the density operator at timeT and,
therefore, the expectation values of the operators of interest:

where cc stands for complex conjugate, and where

ProvidedΓ2T , 1 andΓ3T , 1, the ratio of the two expectation
values is given by

We shall see that this ratio can be determined from the ratio of
the cross-peak intensities of two complementary experiments
labeled I and II:

CrHr/C′ Dipole-CSA Cross-Correlation.The dipole-CSA
cross-correlated relaxation of the multiple quantum manifold
C′xCR

x can be treated in a similar fashion.17 The relevant
mechanisms involved are CSA{13CR} and CSA{13C′} and the
dipolar couplings DD{13CR-1HR} and DD{13C′-1HR }. When
the single transition operators are chosen as a basis, the
relaxation matrix is reduced to four 2× 2 blocks. For thep )
+2 and one of thep ) 0 blocks, the components of vectorb,
in analogy to eq 3, are given by

The vectorsb-- andb-+ transform as complex conjugates of
b++ andb+-, respectively. The evolution ofb++ andb+- in
their subspaces is described by eq 4 with

whereRi and Ra indicate the auto-relaxation rates of the in-
phase and antiphase terms 2CR

xC′x and 4CR
xC′xHR

z. Rav is the
average ofRi and Ra. The remaining rates in the diagonal
elements are due to cross-correlation between the four relevant
mechanisms (see Table 2). If|Ri - Ra| , |4π1J(CRHR)|, the
off-diagonal terms can be neglected.17

The cross-correlated relaxation between CSA{13C′} and DD-
{13CR-1HR} leads to a partial conversion of 2CR

xC′x into
4CR

yC′yHR
z and can be measured with the scheme proposed in

Figure 3b. It is necessary to invert two of the three nuclei
involved in order to maintain the relative signs of the cross-
correlation rate that one wishes to determine. AtT/4 and 3T/4,
1H and13C′ π pulses are applied simultaneously, while atT/2
1H and13CR π pulses are applied. The overall effect is to retain
only the CSA-dipole interactions involving three different
nuclei (the first two terms in Table 2) and to refocus the
chemical shift evolution. Using eq 8, one can calculate the
expectation values of the relevant operators:

where

The ratio of the two expectation values is

We shall see that this ratio can be determined from the ratio of
the cross-peak intensities of two complementary experiments
labeled I′ and II′:

b++ ) (〈x2CR
+C′+HR

R〉
〈x2CR

+C′+Hâ
R〉 ) b+- ) (〈x2CR

+C′-HR
R〉

〈x2CR
+C′-HR

â〉 ) (12)

R++ )

(iπJ(CRHR) + Rav + RDQR
Ri - Ra

2
Ri - Ra

2
-iπJ(CRHR) + Rav + RDQâ

)
(13a)

R+- )

(iπJ(CRHR) + Rav + RZQR
Ri - Ra

2
Ri - Ra

2
-iπJ(CRHR) + Rav + RZQâ

)
(13b)

〈2CR
xC′x〉 ) (x2/4)(〈x2CR

+C′+HR
R〉 + 〈x2CR

+C′+HR
â〉 +

〈x2CR
+C′-HR

R〉 + 〈x2CR
+C′-HR

â〉 + cc)

) 1/2(exp{-(Rav - Γ1′)T} + exp(-(Rav + Γ1′)T}) (14a)

〈4CR
yC′yH

R
z〉 ) (x2/4)(〈-x2CR

+C′+HR
R〉 +

〈x2CR
+C′+HR

â〉 + 〈x2CR
+C′-HR

R〉 - 〈x2CR
+C′-HR

â〉 +

cc) ) 1/2(exp{-(Rav - Γ1′)T} + exp(-(Rav + Γ1′)T})
(14b)

Γ1′ ) RC′,CRHR + RC′HR,CR (15)

〈4CR
yC′yH

R
z〉

〈2CR
yC′x〉

) tanh(Γ1′T) (16a)

〈2CR
xNx〉 ) 1/4(〈2CR

+N+HR
RHN

R〉 + 〈2CR
+N+HR

RHN
â〉 +

〈2CR
+N+HR

âH
N

R〉 + 〈2CR
+N+HR

âH
N

â〉 +

〈2CR
+N-HR

RHN
R〉 + 〈2CR

+N-HR
RHN

â〉 +

〈2CR
+N-HR

âH
N

R〉 + 〈2CR
+N-HR

âH
N

â〉 + cc)

) 1/4{exp[(Γ2 + Γ3)T] + exp[-(Γ2 + Γ3)T]}

exp[-(Rav + Γ1)T] + 1/4[(Γ2 - Γ3)T] +
exp[-(Γ2 - Γ3)T] exp[-(Rav + Γ1)T] (9a)

〈8CR
yNyH

R
zH

N
z〉 ) 1/4(-〈2CR

+N+HR
RHN

R〉 +

〈2CR
+N+HR

RHN
â〉 + 〈2CR

+N+HR
âH

N
R〉 -

〈2CR
+N+HR

âH
N

â〉 + 〈2CR
+N-HR

RHN
R〉 -

〈2CR
+N-HR

RHN
â〉 - 〈2CR

+N-HR
âH

N
R〉 +

〈2CR
+N-HR

âH
N

â〉 + cc)

) -1/4{exp[(Γ2 + Γ3)T] +
exp[-(Γ2 + Γ3)T]} exp[-(Rav + Γ1)T] +

1/4{exp[(Γ2 - Γ3)T] +
exp[-(Γ2 - Γ3)T]} exp[-(Rav - Γ1)T] (9b)

Γ1 ) RCRHR,NHN + RCRHN,NHR (10a)

Γ2 ) RCRHR,CRHN + RNHR,NHN (10b)

Γ3 ) RCRHR,NHR + RCR,N + RCRHN,NHN (10c)

〈8CR
yNyH

R
zH

N
z〉

〈2CR
xNx〉

) tanh(Γ1T) (11a)

a(II)/a(I) ) -tanh(Γ1T) (11b)
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Other Effects. So far it has been assumed that the double-
and zero-quantum operators have the same average self-
relaxation behavior. In a more rigorous treatment, the average
ratesRav in eqs 5 and 13 have to be replaced byRav

DQ and
Rav

ZQ in the double- and zero-quantum subspaces, respectively.
We can define a new average,R′av ) 1/2(Rav

DQ + Rav
ZQ) so that

Rav
DQ ) R′av + δ andRav

ZQ ) R′av - δ, with δ ) 1/2(Rav
DQ -

Rav
ZQ). The termδ has an effect similar to that due to the CSA-

CSA cross-correlated relaxation mechanism, so that we can
include it in the corresponding rates by substitutingRCR,N w
RCR,N + δ and RCR,C′ w RCR,C′ + δ. Further cross-correlated
rates of interactions involving remote nuclei can be included in
the autorelaxation rate.

Measurement of the Backbone AngleΨ. In proteins, the
relaxation ratesΓ1 and Γ1′ defined above are related to the
backbone angleΨ. SinceRCRHR,NHN . RCRHN,NHR, one obtains
Γ1 ≈ RCRHR,NHN, because of the unequal internuclear distances,
and one may write in the slow-tumbling limit

whererCH and rNH are the CR-HR and N-HN bond distances
and θCH,NH is the angle subtended between the CR-HR and
N-HN internuclear vectors,τc is the global rotational correlation
time assuming isotropic overall tumbling andSis the generalized
Lipari-Szabo order parameter.19,20Assuming the peptide bond
to be planar (see Figure 1), the angleθCH,NH is related to the
backbone angleΨ in the following way:

Similarly, RC′,CRHR . RC′HR,CR, soΓ1′ ≈ RC′,CRHR. In the slow
tumbling limit one obtains

whereB0 is the static magnetic field andF(σX,σY,σZ) is given
by9,10,12

whereσi (i ) X, Y, Z) are the three principal components of the
C′ chemical shift tensor andθi (i ) X, Y, Z) are the angles

subtended between the internuclear CR-HR vector and the three
principal axes of the shift tensor. Except for glycine residues
in proteins we may assume that the CSA tensor is oriented as
shown in Figure 1 and the anglesθi are related to the backbone
Ψ angle in the following way:9,10,12

Results and Discussion

Experiments I and II To Measure RCRHR,NHN. Figure 4a
shows two sequences which make it possible to measure the
signal amplitudes required for the ratio of eq 11b. First, the
multiple quantum coherence 4NxCR

xC′z is excited.21 Hereafter,
the scheme of Figure 3a is inserted. After the relaxation time
T, either of the two terms 4NxCR

xC′z or 16NyCR
yC′zHR

zHN
z need

to be converted into an observable signal. In experiment I, we
(19) Lipari, G.; Szabo, A.J. Am. Chem. Soc. 1982, 104,4546.
(20) Lipari, G.; Szabo, A.J. Am. Chem. Soc. 1982, 104, 4558. (21) Bax, A.; Ikura, M.J. Biomol. NMR1991, 1, 99.

Table 2. Cross-Correlated Interactions in a13C′-13CR-1HR

Systema,b

RDQR RDQâ RZQR RZQâ

RC′,CRHR + - - +
RCR,C′HR + - - +
RC′HR,CRHR + + - -
RC′,CR + + - -
RCR,CRHR + - + -
RC′,C′HR + - + -

a The + and- signs in the table indicate whether the contribution
of a particular term must be added to or subtracted from the average
transverse relaxation rates.b See the Appendix, section B, for explicit
expressions of the rates.

a(II ′)/a(I′) ) tanh(Γ′1T) (16b)

Γ1 ) (µ0p

4π )2 γH
2γCγN

rNH
3rCH

3

(3 cos2 θCHNH - 1)
2

2S2τc

5
(17)

θCH,NH ) cos-1[0.163+ 0.819 cos(Ψ - 120°)] (18)

Γ1′ ) (µ0p

4π )γC
2γH

rCH
3

2B0

3
F(σX,σY,σZ)

2S2τc

5
(19)

F(σX,σY,σZ) ) 1/2[σX(3 cos2 θX - 1) + σY(3 cos2 θY - 1) +

σZ(3 cos2 θZ - 1)] (20)

Figure 4. Pulse sequences employed for the measurement of cross-
correlation rates (a)RCRHR,NHN and (b) RC′,CRHR. Narrow and wide
rectangles indicateπ/2 andπ pulses. The13CR π pulse in the middle
of the relaxation periodT has a RE-BURP24 profile (typically of 2.5
ms duration to cover 16 ppm at 100 MHz). The1H π pulse atT/2 in
(b) is applied after the soft13CR pulse in order the allow refocusing of
the scalar coupling (if they are applied simultaneously they interfere
with each other). The fixed delays are set toτ1 ) 1/4J(NHN), τ2 )
1/4J(NC′), τ3 ) 1/4J(C′CR), ∆1 ) 1/8J(CRHR) and∆2 ) {1/8J(NHN)
- 1/8J(CRHR)}. The relaxation periodT must be larger than 1/2J(CRHR)
so that the pulses can be shifted over a suitable range in experiments
II and II′. The 15N magnetization evolves freely during 2Rt1, then in
the manner of a constant time experiment during the period where the
JNC′ scalar coupling is refocused. The constantR can be chosen to obtain
the desired resolution in the15N chemical shift domain. Detection is
achieved using echo-antiecho gradient selection to enhance sensitiv-
ity.25 Unless specified otherwise, all pulses are applied along thex-axis.
Phase corrections for Bloch-Siegert shifts must be optimized for all
pulses marked with stars. In experiments I and II the phase cycle isΦ1

) (x), (-x); Φ2 ) 2(x), 2(-x); Φ3 ) 4(y), 4(-y); Φ4 ) 8(y), 8(-y);
Φ5 ) 16(x), 16(y), 16(-x), 16(-y). In experiments I′ and II′ the phase
cycle isΦ1 ) (x), (-x); Φ2 ) 2(y), 2(-y); Φ3 ) 4(y), 4(-y); Φ4 )
8(x), 8(y), 8(-x), 8(-y). For experiments I′ and II′, the phaseΨ must
bey andx, respectively. Decoupling of the proton and nitrogen channels
can be achieved with WALTZ-1626 and GARP.27

θX ) cos-1[-0.3095+ 0.3531 cos(Ψ - 120°)]

θY ) cos-1[-0.1250- 0.8740 cos(Ψ - 120°)] (21)

θZ ) cos-1[-0.9426 sin(Ψ - 120°)]
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collect 4NxCR
xC′z directly, while in experiment II, 16NyCR

y

C′zHR
zHN

z is first converted into 4NxCR
xC′z, by moving the two

1H pulses by∆1 ) 1/8J(CRHR) during the T period. This
generates an asymmetry of 4∆1 ) 1/2J(CRHR) in the sequence
which allows the scalar couplingJ(CRHR) to convert 2CRyHR

z

into CR
x. The J(NHN) coupling acts not only during 4∆1 but

also in an extra period of duration 4∆2 ) 1/2J(NHN) -
1/2J(CRHR) to convert 2NyHN

z into Nx. To have similar signal
attenuation in the two experiments, a period of duration 4∆2

with the same number of pulses, but positioned so that evolution
under scalar couplings is suppressed, is also inserted in
experiment I (see Figure 4a). Note thatJ(NHN) and J(CRHR)
have opposite signs (becauseγN < 0) so that 16NyCR

yC′zHR
zHN

z

is converted into-4NxCR
xC′z, hence the minus sign in eq 11b.

Theπ pulse atT/2 inverts only the CR nuclei (but not the Câ or
the C′ nuclei), thus the timeT does not need be set to a
multiple of 1/J(CRCâ).10 Note that shifting pulses in experiment
II relative to experiment I does not influence other relaxation
properties (see Figure 3). At the end of both experiments I and
II, the multiple-quantum term 4NxCR

xC′z is transferred back to
the HN proton. Both experiments include an evolution period
to separate the signals according to the15N chemical shifts.11

The intensity ratios of the cross-peaks observed in the two 2D
spectra is given by eq 11b.

Experiments I′ and II ′ To Measure RC′,CRHR. The pulse
sequences of Figure 4b are designed to measureRC′,CRHR. A term
2C′yNz is first created through successive transfers and converted
into a doubly antiphase coherence 4CR

zC′xNz during a delay 2τ3

) 1/2J(CRC′). A semiselectiveπ/2 pulse applied to the aliphatic
carbons converts this into 4CR

xC′xNz, as discussed elsewhere.10,21

The scheme of Figure 3b is then inserted to allow a partial
conversion of 4CRxC′xNz into 8CR

yC′yNzHR
z under cross-cor-

related CSA{13C′}/DD{13CR-1HR}. In experiment I′ and II′, a
band-selectiveπ pulse inverts the13CR atT/2 without perturbing
the 13Câ carbons.9 In experiment II′ the simultaneous1H and
13C′ π pulses are shifted by∆1 ) 1/8J(CRHR) toward the center
of the evolution period in order to create an asymmetry of 4∆1

) 1/2J(CRHR) which leads to the conversion of the term

8CR
yC′yNzHR

z into 4CR
xC′yNz. After a π/2 pulse on13CR, the

terms 4CR
zC′xNz and 4CR

zC′yNz are transformed during a second
period of 2τ3 ) 1/2J(CRC′) into 2C′yNz or 2C′xNz in experiments
I′ or II′, respectively. Thus, the13C′ “read” pulse has to be shifted

Figure 5. Experimental spectra of15N,13C-labeled human ubiquitin obtained with the sequences I, II, I′, and II′ of Figure 3 with a relaxation
interval T ) 17 ms. The ratios of the cross-peak amplitudesa(II)/a(I) and a(II ′)/a(I′) give the ratesRCRHR,NHN andRC′,CRHR, respectively. Negative
cross-peaks are filled in black. The digital resolution in theω1 dimension is 11 Hz, and 128 scans were accumulated for each of the 148t1 points,
resulting in a total experimental time of 7.5 h per experiment. The experiments have been carried out with a 1.5 mM sample of15N,13C-labeled
human ubiquitin (VLI Research) in H2O:D2O ) 9:1 buffered at pH 4.5 at 303 K with a Bruker 400 MHz Avance spectrometer equipped with a
triple resonance TBO probe. All data-processing and peak-picking were carried out using the NMRpipe and NMRdraw software.28

Figure 6. Examples of intensity ratiosa(II)/a(I) and a(II ′)/a(I′) as a
function of the relaxation intervalT. Two-spin coherences CR

x(n)Nx-
(n+1) or CR

x(n)C′x(n) are identified by the name of thenth amino acid.
The dashed lines are fits to eq 11b fora(II)/a(I) and eq 16b fora(II ′)/
a(I′).
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in phase by 90° in experiment II′ relative to experiment I′.
Evolution under13C′ chemical shifts is suppressed in both
experiments by applying a13C′ π pulse right after the relaxation
periodT. In experiment II′ two simultaneousπ pulses on13C′
and 13CR are applied at 2∆1 ) 1/4J(CRHR) after the firstπ/2
13C′ pulse, while in the experiment I′ these two pulses are
applied immediately after theπ/2 13C′ pulse. Again, shifting
the pulses does not influence the relaxation properties (see
Figure 3). Like in the experiments I and II, we record two
complementary 2D spectra and determine the ratio of the
intensities according to eq 16b.

Applications to 15N,13C-Labeled Human Ubiquitin. Figure
5 shows parts of 2D spectra obtained with the four experiments
described in Figure 4. Experiments I and II were performed
with relaxation delaysT ) 6, 10, 17, and 25 ms, while I′ and
II ′ were performed withT ) 10, 17, 25 and 35 ms. In Figure
6, the ratios of the signal amplitudesaII /aI andaII ′/aI′ are plotted
for some selected residues as function ofT and fitted to eqs
11b and 16b, respectively. The fits were performed using the
subroutines of the ODRPACK library.22

In Figure 7 the values ofRCRHR,NHN andRC′,CRHR obtained from
these fits are plotted against theΨ angles observed in the X-ray

structure.23 The curves in Figure 7 represent the rates predicted
from eqs 17-21 calculated for three different values of the order
parameterS2. Except for the terminal residues, most residues
in ubiquitin haveS2 values which lie between 0.76 and 0.9.1

Conclusion

In this paper, we have presented a compact theoretical
treatment of the effects of cross-correlated relaxation mecha-
nisms on the relaxation of two-spin coherences involving various
nuclei in15N,13C-labeled proteins. We have presented improved
experiments to measure cross-correlation between the dipolar
13CR-1HR and 15N-1HN interactions on two-spin coherences
involving the 13CR nucleus of theith residue of a protein and
the 15N nucleus of the neighboring residue (i + 1). We have
also presented experiments to measure cross-correlation between
the13C′ (carbonyl) CSA and the dipolar13CR-1HR coupling on
the relaxation of two-spin coherence involving the13C′ and13CR

nuclei of theith residue of a protein. These methods have been
applied to 15N,13C-labeled human ubiquitin to extract the
relevant cross-correlation rates, which we have demonstrated
to be related to the backbone angleΨ in proteins.

Appendix

A. Perturbation Expansion of the Relaxation Matrix. The
effect of the off-diagonal elements of eq 5 on the dynamics of
the spin system can be determined by using perturbation
theory.18 We illustrate this by considering the submatrixR++

given in eq 5a.R++ may be split into two matrixes,RD
++ and

RND
++:

It is to be noted thatRND
++ is Hermitian even thoughR++ is

non-Hermitian.RND
++ can be treated as a perturbation onRD

++.
The first-order corrections to the matrix elements ofRD

++

vanish. The second-order corrections are given by

where we have utilized the Hermitian character ofRND
++. The

(22) Boggs, P. T.; Byrd, R. H.; Rogers, T. E.; Schnabel, R. B.User’s
Reference Guide for ODRPACK 2.01sSoftware for Weighted Orthogonal
Distance Regression; NIST IR4834; U.S. Government Printing Office:
Washington, DC, 1992.

(23) Vijay-Kumar, S.; Bugg, C. E.; Cook, C. J.J. Mol. Biol. 1987, 194,
531.

(24) Geen, H.; Freeman, R.J. Magn. Reson.1991, 93, 93.
(25) Palmer, A., III; Cavanagh, J.; Wright, P. E.; Rance, M.J. Magn.

Reson. 1991, 93, 151.
(26) Shaka, A. J.; Keeler, J.; Frenkiel, T.; Freeman, R.J. Magn. Reson.

1983, 52, 335.
(27) Shaka, A. J.; Barker, P. B.; Freeman, R.J. Magn. Reson. 1985, 64,

547.
(28) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax,

A. J. Biomol. NMR 1995, 6, 277.
(29) Teng, Q.; Iqbal, M.; Cross, T.J. Am. Chem. Soc. 1992, 114,5312.

Figure 7. Experimental cross-correlation ratesRCRHR,NHN andRC′,CRHR

plotted as a function of the backbone angleΨ found for 53 well-
resolved amino acids (except glycines) from the X-ray structure of
ubiquitin. The curves represent the theoretical dependence derived from
eqs 17 and 18 forRCRHR,NHN and from eqs 19-21 for RC′,CRHR. The
correlation time was assumed to be 4 ns. The values ofσX, σY, andσZ

(see Figure 1) were assumed to be 244, 178, and 90 ppm.29 The three
curves correspond to order parametersS2 ) 1, 0.90, and 0.76. The
rates corresponding to the four residues in the C-terminal loop which
have a small order parameters are indicated by open circles.
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second-order corrections obtained from eq A-3 are complex and
comprise both real and imaginary parts. One can estimate the
second-order correction to the eigenvalues by assuming that
RDQRR - RDQRâ ≈ RDQRR - RDQâR ≈ RCRHR,NHN, Ria ≈ Rai ≈ Rii

+ R1
H, andRaa ≈ Ria + R1

H ≈ Rii + 2R1
H, whereR1

H is the
contribution to theT1 of 1HN (or 1HR) due to homonuclear
dipolar interactions with other1H’s. Assuming aRCRHR,NHN of
15.0 s-1 (which is an upper limit in the present case) and aR1

H

of 6.4 s-1, we obtain a value of about 0.01 s-1 for the real part
of the correction, i.e., a negligible adjustment of the decay rates
of the coherences. Similarly, the imaginary part (which gives
rise to frequency shifts of the components of the doublet-of-
doublets) corresponds to about 0.08 Hz. These corrections are
evidently very small and may be neglected in the present case.

A special case arises whenJ+- ) 0, which may be the case
when one studies the effects of cross-correlation between two
1H-13C dipolar interactions, say in the case of13CR-1HR, 13Câ-
1Hâ pairs. This condition corresponds to the overlap of the two
central lines of the doublet-of-doublets in the zero- and double-
quantum spectra. In this case, the above form of perturbation
theory can no longer be used since (RD

++)22 ≈ (RD
++)33 (due

to the fact thatRDQRâ ≈ RDQâR). In this case, we can remove
the degeneracy (to first order) by forming linear combinations
of the spin-states corresponding to these rates. The resulting
nondegenerate states are given by

The corresponding diagonal elements of the alteredR++ matrix
(correct to first order) are given by

where

The mixing coefficientsa(
(2) anda(

(3) in eq A-4 are given by

It is evident that the coherences are mixed if their precession
frequencies are nearly equal. Thus, to first order, the coupled
differential equations governing the evolution ofb++ in eq 3
split up into one subspace of dimensions 2 and two of dimension
1.

B. Cross-Correlation Rates. In the slow-tumbling limit, the
relaxation rate due to cross-correlation of the fluctuations of
two dipole-dipole interactions is given by

whererij and rkl are the internuclear distances andθij,kl is the
angle subtended between the two internuclear vectors. The other
symbols have their usual meaning.

The relaxation rate due to cross-correlation of the fluctuations
of a dipole-dipole interaction and a chemical shift anisotropy
in the slow tumbling limit is given by

with ê ) x, y, z whereσê
i is theêth principal component of the

CSA of spini andθê
i is the angle subtended between theêth

principal axis of the CSA tensor and the internuclear vector.
The general case of cross-correlation between the CSA’s of

two nucleii andj, where both nuclei have chemical shift tensors
which are not axially symmetric, leads to rather cumbersome
expressions. Some simplification is obtained when one of the
chemical shift tensors (say for nucleusi) is axially symmetric.
In this case, the rate is given by

where∆σi is the CSA of nucleusi andê ) x, y, z whereσê
j is

theêth principal component of the CSA of spinj andθê
j is the

angle subtended between theêth principal axis of the CSA with
the unique axis of the CSA tensor of nucleusi.

Supporting Information Available: Table givingRCRHR,NHN

andRC′,CRHR values in ubiquitin (PDF). This material is available
free of charge via the Internet at http://pubs.acs.org.
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R22
++′ ) Rav + R+

R33
++′ ) Rav + R- (A-5)

R( ) 1/2{[RDQRâ + RDQâR] (

[(RDQRâ - RDQâR)2 + 4R2
∆]1/2} (A-6)

R∆ ) 1/4(Rii - Rai - Ria + Raa) (A-7)
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